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COMPRESS ION WAVES IN A FLUID W ITH GAS BUBBLES* 

A. YU. BELYAYEV 

For a fluid with gas bubbles, the wave equation with a fourth-order mixed 

derivative with respect to time and the coordinate is proved. The proof 

is based on the Bloch-Floquet form whose parameters are found by solving 

a problem in a cell of periodicity. The identity of the dispersion 

relations is used. Dispersion and wave-damping effects were studied in 

the case of acoustic oscillations in a fluid with gas bubbles in /l-3/. 

On the basis of heuristic arguments an equation was proposed in /2, 3/ 

which describes the propagation of acoustic waves in such a medium. 

Neglecting surface tension and compression of the fluid, this equation 

can be reduced to the form 

3c,ull = 3n'pp,-'Ap -r RZApt, 

where p1 and p are the fluid and gas densities, a is the velocity of 

sound in the gas, R is the radius of the bubble, c is the volume con- 

centration of the gas, p is the pressure in the mixture, and A is the 

Laplace operator. The presence of the last term on the right-hand side 

leads, see /2, 3/, to dispersion of the waves, or for waves with frequencies 

that exceed UK- (3P,l,&' , to exponential damping. Our present aim is to 

deduce the equation from the model that describes the microstructure 

of the suspension, by using the theory of averaging of equations with 

rapidly oscillating coefficients /4/. This approach, as distinct from the 

phenomenological approach, enables a connection to be found between the 

microscopic and macroscopic parameters of the motion of the suspension, 

and enables the error of the averaged equation to be estimated. When 

obtaining the model of the microstructure, the arrangement of the bubbles 

is assumed to be symmetric in the equilibrium state, so that the averaging 

problem can be reduced to a problem in a cell of periodicity. The solution 

of the cell problem and the coefficients of the averaged equation are 

expressed in terms of special harmonic functions which represent an ex- 

tension of the Weierstrass functions to the case of dynamics. 

1. Formulation of the problem. The acoustic waves in a fluid with gas bubbles are 

given by the equation 

a 1 (X&-r (r)v,, == rap 1 (TX) T’“rp (1.1) 

where 'p (z, 1) is the potential of the pulses or pressure in the medium, O(J) and a (z) are 

the density and velocity of sound in the equilibrium state, in the neighbourhood of which the 

equations of gas dynamics are linearized: the indices a run over the values 1, 2, 3, and 

summation is performed with respect to them. In a uniform fluid with homogeneous gas bubbles, 

the functions p (I) and a(z) are piecewise-constant and take the values pl, a,, and p. fl in 
the domains occupied by the fluid and gas respectively. On the boundaries between the fluid 

and gas, if surface tension is neglected, we have to assume that the function cp and the 

normal component of the vector I>-' (z)Cm are continuous. 

We assume that, in the equilibrium state, all the bubbles are spherical, of the same 

radius R, and are arranged periodically in space, i.e., their centres are at the nodes of a 

periodic lattice with generating vectors ~~(a='l,2,3). We locate the origin at a bubble centre. 

The centres of the other bubbles are then at the points 5, = mUTar where m" are integers. 

The vectors Tm are the periods of the coefficients of Eq.(l.l). 
We consider the case when the characteristic scale of variation of the initial data for 

Eq.(l.l) is much greater than the distance between adjacent bubbles. In this case, Eq.(l.l) 

can be averaged. This property can be stated in terms of the theory of Bloch-Floquet waves 

/5, G/, i.e., of solutions of Eq.Cl.1) of the type 
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cp (x, t) = CD (x) exp i (kx - ot) (1.2) 

where o and k are the frequency and wave vector of the Bloch-Floquest wave, which are con- 

nected by the dispersion relation, and (D(X) is a periodic function with the same cell of 

periodicity as the coefficients of Eq.cl.1). 

To find the frequency o and the Bloch function @ with a given wave number k, we 

subsitute (1.2) into Eq.cl.1) and obtain a selfadjoint spectral problem, which can be given 
the variational statement /6/ 

6J (x) = 0 (1.3) 

J (x) = i p-’ (x) 1 Vx I” d3x (1 a-2 (x) p-' (I) 1 x I2 d%--l 

where B is the cell of periodicity of the coefficients of the equation. The functional J is 

defined on the set of complex-valued functions x(z), which satisfy the multiplicativeness 

conditions 

x (x + z,) = x (z) exp ikrcr (1.4) 

These conditions play the role of boundary conditions for the Euler equations of the 

variational problem (1.3). 

The stationary values of the functional J are equal to the squares of the frequencies o 

corresponding to the wave number k, i.e., they define the dispersion relation, while the 

stationary points x (z) are connected with the periodic Bloch function 6,(s) by the relation 

x (5) = @ (.r) exp iks 

For each real wave vector k, the functional J has a denumerable set of stationary values, 

and the dispersion relation splits into a denumerable set of dispersion branches a2 = as2 (k) 
(s = 0, 1, 2, . .). The functions o, depend on k evenly and periodically with periods vp, which 

form a basis in the space of wave vectors which is related to the basis of vectors z,: 

The lowest dispersion branch oo(k) passes through the point 0 = 0, k = 0. Its 

behaviour in the neighbourhood of this point is of direct concern for averaging theory. 

The following theorem holds. Let L(o, k) be even with respect to o and complete with 

respect to k, such that L (o,,(k), k)= 0( 1 k I*), k-0. Let @(r, t) be the solution of the 

Cauchy problem for Eq.(l.l), in which the coefficients p(z) and a(x) are replaced by p (X/E) 

and a (Z/E), where E is a small parameter, and the initial data are independent of E. Then, 

L (i&a/at, iEV) ‘pe = 0 (EN) 

as E -0, where 0 (Ed) is understood in the sense of the convergence of distributions. This 

means that, if we take the integral convolution of 'pe with any finite smooth function h(x, t) 

and act on the convolution with the operator E-NL, we obtain a quantity which is uniformly 

bounded with respect to x and t as e-0. 
This theorem is a consequence of the results of /4/. It enables us to replace Eq.cl.1) 

with variable coefficients by equations with any degree of approximation, whose coefficients 

are constant. Approximation of the lowest branch of the dispersion relationbyasecond-degree 

polynomial L (w, k) = co2 - u@k,kp corresponds to the value N = 4 and leads to a second-order 

averaged equation, i.e., the equation of acoustics with constant coefficients. Higher-order 

approximations lead to equations which describe the wave dispersion. The averaging problem 

thus reduces to solving the cell problem which consists in minimizing the functional J. 

2. Simplification of the cell problem. For actual fluids and gases, we usually 

have the inequalities 

p < plr a% < a,%, 

which allow the problem of finding the lowest branch of the dispersion relationtobe simplified. 

Physically, the simplifications amount to regarding the fluid as incompressible in the 

principal approximation with respect to these parameters, and the pressure in each bubble as 

constant with respect to the space coordinates. Under these assumptions, the functional J 
can be written as 

J= 3a'p 
4nR3FlIXal* s 

'ivXpd3Z 

B, 

where B, is the part of the cell B occupied by fluid, and x0 is the constant value of the 

function x(5) in the bubble located in B. The quantity x0 only affects the normalization 

of the eigenfunctions x(r) and henceforth is put equal to R-l. 
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These simplifications were justrfied 2-n /7/. It must be said that they .ir-e <.'I1 1 )' 

permissible for evaluating the lowest branch of the dispersion relation. For the higher 
frequencies, both the fluid compressibility and the gas non-uniformity in the bubbles tar C' 
important. Moreover, the fluid compressibility cannot be ignored at very low gas co1icen- 

trations. The latter must be much greater than ~~pa,-~p,-', though even then it is well below 

unity. 

As distinct from the initial problem, the variational problem (1.31 with the simplified 

form of the functional J, has a unique stationary point, and amounts to finding the function 

x (x)9 complex-valued and harmonic in the domain occupied by the fluid, which satisfies the 

multiplicativeness condition (1.41 and takes the value x0 = R-’ on the boundary with a 

bubble. 

3. Construction of the multiplicative Green's function. We consider the 

following method of solving the variational problem (1.3). Let rk (I) be a function which 

satisfies the multiplicativeness conditions and is a solution of Poisson's equation 

AF" (z) = --4nZ6 (x -z,) exp ikx, 

where the summation is over the centres of the bubbles z,. The existence of such a function 

is proved below. The solution of problem (1.3) is sought as the series 
m 

x (zr) = Crk (.r) + 2 R’Ca’ +r;,,. a 
I=1 , (4 (3.1) 

where C, (?l”‘al are constants, and the subscripts cc,...ul in the function r'(z) indicate 

that it is differentiated with respect to the coordinates and that summation is performed over 

them. The fact that the function X(Z) thus constructed is harmonic and multiplicative is 

obvious, if the series (3.1) converges sufficiently rapidly, while the condition on the 

boundary with the bubbles can be satisfied by a suitable choice of the constants c, Ca'.',al. 

This method of solution was used in /B-10/ when averaging periodic structures in statics, 

and periodic harmonic functions were constructed, in terms of which the solution of the cell 

problem is expressed. Their generalization for problems of dynamics are the multiplicative 

harmonic functions I+ (x). 

The existence of the function rk (z) can be proved by writing it as one of the Fourier 

series 

4% rk tl.) = ti z -expi(k- k,)n 
I k ‘,,, I2 

where IB ) is the volume of the cell B. In the first series, the summation is over the all 

bubble centres CC,, and in the second, over the nodes of the related lattice k, = mav,. Both 

series are conditionally convergent; this is proved in /8/ with the aid of the following well- 

known device: they are differentiated term by term with respect to z or k a sufficient 

number of times so that the series become absolutely convergent, then rk (J) is restored by 

integration. 

It can be shown by direct substitution that the function constructed by means of these 

series satisfies Poisson's equation and condition (1.4). The convergence of both forms is 

destroyed when 5 = J, and k = k,. For these values of the arguments, r" (5) has sinqular- 

ities. 

We shall require later some properties of the function Qk (z) = rk lx) - 1 r 1-1. This 
function is harmonic with respect to 5 and periodic in k with periods Y,. The quantity 0" (0) 
is real, depends evenly on k, and behaves asymptotically as k-0 as follows: 

The constant g depends on the geometry of the lattice and can be found numerically. For 

a cubic, face-centred, and body-centred lattice, Q =: 1.8. 

4. Solution of the cell problem. The stationary point of the variational problem 

(1.3) is sought as the series (3.1). 

since the functions rk,..,,, (z) 

The choice of the constants C, c"'-"J is not unique, 

are linearly dependent: they are symmetric with respect to 

permutations of the indices and their convolution with respect to any pair of indices is zero. 
To avoid this arbitrariness, we have to subject the constants f?,.."l to the same linear 

relations. In this case the constants can be uniquely defined by expanding the left- and 

right-hand sidesof Eq.(3.1) in spherical harmonics on the sphere 1x1 = R. After multiplying 

(3.11 by C,. ..T’ps 1 I 1-l and integrating over the sphere, we obtain a system of linear 

algebraic equations of infinite order for finding the constants C, C”’ ‘“1. This system ciin 
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be reducedtothe form 

(4.1) 

(4.2) 

where s = 1, 2, 3, . . . . and the Greek subscripts of Q" (z) indicate its differentiation with 

respect to the coordinates. 

When R = 0 the system is easily solved. When R >0 the following method of solution 

may be proposed. We fix the value of the constant C and solve system (4.2) by successive 

approximations for Ca,"'aJ, 1> 0. As the zero approximation we put f?""l =0 and substitute 

these values into (4.2) under the summation sign. Hence we find the first approximation 

C"'..-'s = -[(-2)s/(2s)!]RB+'CQ;~...,~~ (0) 

We then substitute into (4.2) under the summation sign the values of the constants found 

at the previous step, and obtain the next approximation, etc. All the approximations, starting 

with the second, are infinite series in powers of R. Our procedure leads to a power series 

expansion in the bubble radii of the solution of system (4.2). The convergence of the method 

for sufficiently small R can be proved by the principle of contracted mappings. 

The constant C is found from Eq.(4.1), into which the solution of system (4.2) is sub- 

stituted. If we confine ourselves to the zero approximation, we obtain the expression 

C = (1 + RQ” (O))-l (4.3) 

Its relative error as R---f 0 is Q(R') for each fixed k# k, and Q(R3) uniformly 
with respect to k. 

5. Analysis of the dispersion relation. Knowing the stationary point x (x) of 
the functional J, we can calculate its stationary value. After integration by parts and 
using Eq.(3.1), the expression for the stationary value reduces to the form 02 = @C, where 
V = 3a2pRPp,-', and the constant C is found from the system (4.2), (4-l), and depends on the 

wave vector k via the coefficients of this system. Given sufficiently small gas concentrations, 

the asymptotic relation (4.3) can be used and the following approximate form of the dispersion 

relation obtained: 

o2 = Sla (1 + RQ” (O))-l 

The quantity Q”(0) has a singularity for k = k,, so that the frequency o vanishes 

for k = k,. For sufficiently small R, the frequency has an upper limit set by a quantity 

of order Q. 

For frequencies exceeding the maximum possible value, there are no Bloch-Floquest waves 

which are either increasing or damped at infinity. This means that disturbances with these 

frequencies cannot propagate in the medium without exponentially rapid damping. An anomalous 

increase in the damping decrement for waves with frequencies of order g has been observed 

experimentally /l/. 

To obtain the averaged equation of any order of approximation, we must, in accordance 

with our theorem, approximate the dispersion relation by a polynomial in the neighbourhood of 

the point o=O,k=O. We shall confine ourselves to the averaged equation of fourth order. 

Using the expansion of the function Q”(0) at the singular point, we can write the required 

fourth-degree polynomial as 

L(o, k) = 3coz - WR2 1 k 1 * + R2 (1 - c’$) 1 k 1 *co2 

The relative error with which the coefficients of this polynomial are evaluated is 0 (c) 
as c + 0. If we neglect $1’4 in the last term by comparison with unity, the averaged 

equation 

L (iaiat, iv) cp (x, t) = 0 

is just the same as that obtained by phenomenological theory. We can refine the operator L, 

both for larger values of the gas concentration, and for larger values of the wave vector and 

frequency. The refining terms depend, however, on the type of periodic lattice of the bubble 

centres, and thus have no direct relation to an actual suspension, in which the bubbles are 

arranged chaotically. 
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ASYMPTOTIC ANALYSIS OF CONVECT IVE DIFFUSION IN PROBLEMS WITH A D 
IN THE CATALYTIC PROPERTIES OF THE SURFACE AROUND WHICH THE FLOW 

V.G. KRUPA and G.A. TIRSKII 

ISCONTINUITY 
TAKES PLACE* 

The stationary concentration distribution in the flow round bodies with a 

discontinuity in their surface catalytic properties is investigated. An 

asymptotic analysis of this problem is carried out on the basis of the 

Navier-Stokes equations when Re-cc in the neighbourhood of the point 

of discontinuity in the catalytic properties, and the corresponding boundary 

value problems for the leading terms in the expansion of the required 

functions are formulated. Two spatial problems are solved in which 
account is taken of the transverse diffusion during the circumfluence of 

a planar surface with a rectangular insert endowed with different catalytic 

properties. Cases are considered when the diffusion flux of recombining 

particles changes in a stepwise manner on-passing over the surface of the 

insert and when the main surface is non-catalytic but the insert is ideally 
catalytic. 

1. Let us consider the stationary flow of a bindary mixture of a chemically reacting com- 
pressible gas along the surface of a disc and let this disc have a discontinuityinits surface 

catalytic properties at a distance x0 = O(1) from the origin. We assume that E z Rem';: --f (1, 

Re - poavcax,i~, (quantities with the subscript 50 correspond to values of the parameters in 
the approach stream). In a rectangular system of Cartesian coordinates 2, !/ (see /1/, for 
example), the Navier-Stokes equations in the dimensionless variables 

9.* _ .r -- 111 , 
I” 

+$, p*+, v*=+, k*.+- 
L ,c.z 

T*=+, T,:=Y”2, ,*=_!%, 
(‘px o_v_z 

/z* =+ , 
CJm a 

W’* - w’.Q 
!,_V_ 

take the form (we shall omit the asterisks above the dimensionless quantities) 

v.pv = 0, pv.rv = - vp + E2V.T (1.1) 

P v.vc = &2 V(p Sc$Vc) + UJ' 
___- 

*Prikl.Matem.Mekhan.,52,3,450-459,1988 


